İşlemciler nasıl üretiliyor?
Hayatımızın en büyük nimetlerinden birisi olan işlemcilerin nasıl üretildiğiniz hiç merak ettiniz mi?
Teknolojinin de ilerlemesiyle birlikte, bilgisayar ve türevleri cihazların günlük hayatımızdaki yeri ve önemi gün geçtikçe artıyor. Özellikle son dönem bilgisayarlarımızda ve mobil cihazlarımızda kullanılan işlemcilerin nasıl üretildiğiniz hiç merak ettiniz mi?
Kum, %25′i oranında silikon içerir. Silikon oksijenden sonra yerkürenin kabuğunda en çok bulunan elementtir. Kum, özellikle de kuvars (quartz) içeriğinde silikon dioksit (SiO2) halinde bol miktarda silikon içerir ve yarı iletken üretimi için vazgeçilmez bir malzemedir.
Kum, çeşitli aşamalardan geçirilerek içinde bulunan silikon ayrıştırılır. Silikon yeterli saflığa ulaştığında elektronik malzeme üretimine hazır hale gelir. Ortaya çıkan elektronik üretimine uygun silikon o kadar saftır ki her bir milyar silikon atomu içinde bir tane yabancı atom bulunur.
Saflaştırma aşaması tamamlandıktan sonra eritme aşamasına geçilir. Resimde görüldüğü gibi saflaştırılmış eriyik haldeki silikondan bir adet büyük bir kristal oluşturulur. Ortaya çıkan bumono-kristal yapıya ingot (külçe) denir.,
Resimde elektronik sınıfı silikondan üretilmiş mono-kristal külçe (ingot) görülüyor. Her bir külçe yaklaşık olarak 100 kg ağırlığa ve %99.9999 oranında saflığa sahiptir.
Bu külçeler daha sonra kesme makinesine gönderilir ve yonga plakası (wafer) adı verilen birbirinden ayrı ince silikon diskler haline getirilir. Bazı külçelerin uzunluğu 1.5 metreyi geçebilir. İstenilen plaka çapına göre farklı genişliklerde külçeler üretilebilir. Günümüzde işlemciler genellikle 300 mm’lik plakalardan üretilirler.
Kesim işlemi tamamlandıktan sonra silikon diskler (plakalar – wafer) ayna gibi pürüzsüz bir yüzeye sahip oluncaya kadar cilalanırlar. Intel kendi külçe (ingot) ve plakalarını (wafer) üretmek yerine kullanmak istediği plakaları hazır olarak başka üreticilerden temin ediyor. Intel, gelişmiş 45 nm High-K/Metal Gate üretim sürecinde 300 mm’lik plakalar kullanıyor bu sayede yonga başına üretim maliyetini düşürüyor.
Üstte görülen mavi sıvı fotoğraf filmlerinde de kullanılan ışığa dayanıklı bir kaplama yüzeyi oluşturuyor. Bu işlem sırasında yonga plakası sürekli döndürülerek kaplamanın her tarafa eşit ve ince bir tabaka halinde yayılması sağlanıyor.
Bu aşamada ışığa karşı dayanıklı yüzey mor ötesi (UV) ışığa maruz bırakılıyor. Mor ötesi ışık tarafından tetiklenen kimyasal reaksiyon aslında eski tip filmli fotoğraf makinelerinin çalışma mantığına çok benziyor.
Işığa dayanıklı kaplamanın mor ötesi ışığa maruz kalan bölümleri çözünebilir hale geliyor. Işığa maruz kalacak yerler bir tür şablonla belirleniyor. Mor ötesi ışığın bazı bölümleri maskelenerek yüzey üzerinde devre desenleri oluşturuluyor. Birden fazla katmanın üst üste bindirilmesi için işlemci üretimi sırasında bu süreç gerektiği kadar tekrarlanıyor.
Ortada bulunan bir lens sayesinde maskeden geçen ışık küçültülerek odaklanıyor. Genelde yüzey üzerinde ortaya çıkan baskı maskenin büyüklüğünden dört kat küçük oluyor.
Yukarıdaki resimde tek bir transistörün gözle görülebilir boyutlara büyütülmüş halini görüyorsunuz. Transistörler bir çeşit anahtar görevi görürler ve yonga üzerinden geçen elektrik akımına yön verirler. Intel’in araştırmacıları bir toplu iğne başına 30 milyon transistör sığdırabilecek kadar küçük üretim yaptıklarını iddia ediyorlar.
Mor ötesi ışık aşaması bittikten sonra ışığa dirençli yüzeyin ışığa maruz kalan kısımları çözünebilir hale gelir ve bir çeşit çözücüyle yıkanarak temizlenir. Bu sayede şablonda bulunan devre şeması yüzeye aktarılmış olur. Transistörün parçaları, ara bağlantılar ve diğer bileşenler bu aşamadan sonra oluşturulmaya başlanır.
Işığa karşı dayanıklı yüzey oyulmaması gereken bölümü korur. Açıkta kalan alanlar kimyasal maddeler yardımıyla oyulur.